UDC 519.21
© E. V. Karachanskaya, 2012
PROBABILITY MOMENTS AND DYNAMICS OF A POINT POSITION WHICH RANDOMLY MOVES ON A SPHERE IN RESPONSE TO POISSON JUMPS
The moments of an m-th order for a point, which randomly moves on a sphere, are found. In the representation of random spherical angles that describe the point position on a sphere the summation of their increments makes it possible to determine the point location in dynamics.
Keywords: probability moments of a random process, characteristic function, Poisson jumps, random walk.
References:
- Doobko V. A. , Savenko O. V., Chalykh E. V. Harakteristicheskie funktsii i ikh primenenie (Uchebno-metodicheskie ukazaniya). - Birobidzhan: izd-vo BGPI, 1996. - 36 s.
- Doobko V. A. , Chalykh E. V. Dinamika tsepi konechnykh razmerov s beskonechnym chislom zven`ev v R2: preprint (in-t prikl. matem. DVO RAN). - Vladivostok; Habarovsk; Dal`nauka, 1998- 18 s.
- Karachanskaya E. Dynamics of random chains of finite size with an infinite number of elements in R2 . Theory of Stochastic processes. 2010 vol.16 (32), no. 2. Pp. 58-68.
Download article (301.8 Kb)