Pacific national university Main page Bulletin of Pacific national university

UDC 519.21

© E. V. Karachanskaya, 2012

PROBABILITY MOMENTS AND DYNAMICS OF A POINT POSITION WHICH RANDOMLY MOVES ON A SPHERE IN RESPONSE TO POISSON JUMPS

The moments of an m-th order for a point, which randomly moves on a sphere, are found. In the representation of random spherical angles that describe the point position on a sphere the summation of their increments makes it possible to determine the point location in dynamics.

Keywords: probability moments of a random process, characteristic function, Poisson jumps, random walk.

References:

  1. Doobko V. A. , Savenko O. V., Chalykh E. V. Harakteristicheskie funktsii i ikh primenenie (Uchebno-metodicheskie ukazaniya). - Birobidzhan: izd-vo BGPI, 1996. - 36 s.
  2. Doobko V. A. , Chalykh E. V. Dinamika tsepi konechnykh razmerov s beskonechnym chislom zven`ev v R2: preprint (in-t prikl. matem. DVO RAN). - Vladivostok; Habarovsk; Dal`nauka, 1998- 18 s.
  3. Karachanskaya E.  Dynamics of random chains of finite size with an infinite number of elements in R2 .  Theory of Stochastic processes. 2010 vol.16 (32), no. 2.  Pp. 58-68.

Download Download article (301.8 Kb)

Сontents Сontents