Pacific national university Main page Bulletin of Pacific national university

UDC 519.95

© Podgaev A. G., 2007

Boundary value problem for the Kortveg-de Vries – Burgers equation with an alternating factor

The initial boundary value problem for two cases for the Kortveg-de Vries like equation is considered. In first case equation contains the second order nonlinear term (case a)) and in the second case it does not (case b)). In case a) we prove the existence of regular solution. In case b) solution exist either locally by time or for prescribed T but with small u. In part I we adduce proofs of the estimation u for approximation u* .

References:

  1. YAnenko N. N., Solov`ev A. S. Nekotorye model`nye uravneniya ak-tivnykh volnovykh sistem i ikh svoystva: Preprint. Novosibirsk, 1979. ¹ 11.
  2. YAnenko N. N., Novikov V. A. Ob odnoy modeli zhidkosti so znako-peremennym koeffitsientom vyazkosti // Chislennye metody mekha-niki sploshnoy sredy. 1973. ¹ 2.
  3. Lar`kin N. A., Novikov V. A., YAnenko N. N.Nelineynye uravneniya peremennogo tipa. M., 1983.
  4. Plotnikov P. I. Uravneniya s peremennym napravleniem parabo-lichnosti i effekt gisterezisa // Doklady AN SSSR. 1993. ¹ 6.
  5. Plotnikov P. I. Predel`nyy perekhod po vyazkosti v uravnenii s peremennym napravleniem parabolichnosti // Differentsial`nye uravneniya. 1994. ¹ 4.
  6. Alikakos N., Bates P. W., Fusko G. Slow motion for the Cahn-Hillard equation in one space dimension//J. Diff. Equat. 1991. V. 90. ¹ 1.
  7. Slemrod M. Dynamics of measured. valued solutions to a backward-forward heat equation//J. of dynamics and differential equation. 1991. V.3. ¹ 1.
  8. Ogava T. Traveling wave solutions to a perturbed Kortveg-de Vries equation//Hiroshima Math. J. 24 (1994), 401-422.
  9. Kozhanov A. I., Lar`kin N. A., YAnenko N. N. Smeshannaya zadacha dlya  nekotorykh klassov uravneniy tret`ego poryadka: Preprint. Novo-sibirsk, 1980.
  10. Kozhanov A. I., Lar`kin N. A., YAnenko N. N. Ob odnoy regulyariza-tsii uravneniy peremennogo tipa // Doklady AN SSSR. 1980.
  11. Kozhanov A. I., Lar`kin N. A., YAnenko N. N. Smeshannaya zadacha dlya odnogo klassa uravneniy tret`ego poryadka // Sibirskiy matem. zhurnal. 1981. ¹ 6.
  12. Kozhanov A. I. O regulyarizatsii odnogo uravneniya peremennogo tipa // Primenenie metodov funktsional`nogo analiza k neklassi-cheskim uravneniyam matematicheskoy fiziki. Novosibirsk, 1983.
  13. Novikov V. A. Teoremy sushchestvovaniya i nesushchestvovaniya dlya od-nogo klassa uravneniy peremennogo tipa // Doklady AN SSSR. 1980. ¹ 6.
  14. Akhmerov R. R. Ob odnoy nachal`noy zadache  dlya differentsial`nogo uravneniya vtorogo poryadka so znakoperemennym koeffitsientom pri starshey proizvodnoy // Chislennye metody mekhaniki splosh-noy sredy. 1984.
  15. Hablov V. V. O nekotorykh korrektnykh postanovkakh granichnykh za-dach dlya uravneniya Kortvega-de Vriza. Novosibirsk, 1979.
  16. Bubnov B. A. Razreshimost` v tselom nelineynykh granichnykh zadach dlya uravneniya Kortvega-de Vriza v ogranichennoy oblasti // Dif-ferentsial`nye uravneniya. 1980. ¹ 1.
  17. Bubnov B. A. Kraevaya zadacha dlya uravneniya Kortvega-de Vriza-Byurgersa // Primenenie metodov funktsional`nogo analiza k ne-klassicheskim uravneniyam matematicheskoy fiziki i vychislitel`-noy matematiki. Novosibirsk, 1979.
  18. Gasenko V. G., Nakoryakov V. E., SHrayber I. R. Usilenie udarnoy volny v zhidkosti s puzyr`kami gaza // Doklady AN SSSR.1980.
    ¹ 6.
  19. Podgaev A. G. O novoy kraevoy zadache dlya uravneniya Kortvega-de Vriza // Tezisy dokladov. Kemerovo, 1983.
  20. Podgaev A. G. O kraevoy zadache dlya uravneniya Kortvega-de Vriza-Byurgersa so znakoperemennym koeffitsientom vyazkosti // Neklas-sicheskie uravneniya matematicheskoy fiziki. Novosibirsk, 1986.
  21. Podgaev A. G. O regulyarnykh resheniyakh v kraevoy zadache dlya uravneniya Kortvega-de Vriza-Byurgersa so znakoperemennym koeffitsientom vyazkosti. Vladivostok, 2003.
  22. Hartman F. Obyknovennye differentsial`nye uravneniya. M., 1979.

Download Download article (375.5 Kb)

Сontents Сontents