UDC 517.983.23
© Lomakina E. N., 2007
Estimation of entropy numbers of the Hardy-type integral operators with variable limits of the integration
The asymptotical behavior of the entropy numbers of the Hardy-type integral operators with variable limits of integration acting in Lebesgue spaces on a semi axis are estimated.
References:
- Lomakina E. N. Otsenki approksimativnykh chisel odnogo klassa integral`nykh operatorov // Sibirskiy matematicheskiy zhurnal. 2003. T. 44. ¹1.
- Maz`ya V. G. Prostranstva S. L. Soboleva. L., 1985.
- Pich A. Operatornye idealy. M., 1982.
- Carl B. Entropy numbers of diagonal operators with application to eigenvalue problems // J. Approx. Theor. 1981. V. 32.
- Carl B. Entropy numbers, s-numbers and eigenvalue problems // J. Funct. Anal. 1981. V. 41.
- Carl B. Entropy numbers of embedding maps between Besov spaces with an application to eigenvalue problems // Proc. Royal Soc. Edinburgh Sect. A. 90. 1981.
- Edmunds D.E., Tribel H. Function spaces, entropy numbers, differential operators. Cambridge: Cambridge Univ. Press., 1996.
- Kinig H. Eigenvalue distribution of compact operators. Birkh?user Boston, 1986.
- Lifshits M.A.,Linde W. Approximation and entropy numbers of Volterra operators with application to Brownian motion // Mem. Am. Math. Soc. V. 745.
Download article (299.7 Kb)