UDC 517.95
© Illarionov A. A., 2007
Some remarks on Hopfs lemma
Hopfs lemma (Leroys inequality) which is applied to prove the existence of solving a boundary value problem for viscous incompressible Navier-Strokes equations in bounded domain is considered. The possibility of generalization of the loosened variant of a lemma in case of liquid nonzero streams through ingredients of bounded domain is investigated.
References:
- Leray J. Etude de diverses equations, integrals non lineaire et de problems que posent lHydrodynamique // J. Math. Pures Appl. 1933. V. 35. ¹ 12.
- Ladyzhenskaya O. A. Matematicheskie voprosy dinamiki vyazkoy neszhimaemoy zhidkosti. M., 1970
- Amick C. J. Existence of solutions to the nonhomogeneous steady Navier-Stokes equations // Indiana Univ. Math. J. 1984. V. 33. ¹ 6.
- Sazonov L. I. O sushchestvovanii statsionarnogo simmetrichnogo resheniya dvumernoy zadachi o protekanii zhidkosti // Matem. zametki. 1993. T. 54. Vyp. 6.
- Fujita H. On the stationary solutions to Navier-Stokes equations in symmetric plane domains under general outflow conditions // Proceeding of International Conference on Navier-Stokes equations, Theory and Numerical methods, 1997, Varenna,Italy. Pitman Research Notes in Math. 388.
- Morimoto H. A remark on the existence of 2-D steady Navier-Stokes flow in bounded symmetric domain under general outflow conditions // J. Math. Fluid. Mech. 9 (2007).
- Fujita H., Morimoto H. A remark on the existence of steady Navier-Stokes flow with non-vanishing outflow conditions // Gakuto International Series in Math. Science and Appl. Nonlinear Waves, 10 (1997).
- Pukhnachev V. V. Viscous flows in multiply connected domains. In book of abstracts, International Conference "Nonlinear partial differential equations", Yalta, Ukraine, 2007.
- Takeshita A. A remark on Lerays inequality // Pacific J. Math. 1993. V. 157, ¹ 1.
- Temam R. Uravneniya Nave-Stoksa. Teoriya i chislennyy analiz. M., 1981.
Download article (295.7 Kb)