Pacific national university Main page Bulletin of Pacific national university

UDC 519.626

© E. M. Vikhtenko, 2012

SOLUTION OF CONTACT PROBLEM WITH FRICTION BY MODIFIED DUALITY SCHEMES

For the solution of the complete contact problem with friction algorithms have been built based on duality schemes with modified Lagrangian functionals. The use of modified Lagrangian functionals makes it possible not only to obtain a convergence on both direct and dual variables, but also to smooth the non-differentiable parts in functionals minimized.

Keywords: contact problem, functional, duality scheme, Lagrangian functional, saddle point, Uzawa’s method.

References:

  1. Reshenie variatsionnykh neravenstv v mekhanike / I. Glavachek, YA.  Gaslinger, I. Nechas, YA. Lovishek. M.: Mir, 1986.
  2. Kikuchi N., Oden T. Contact problem in elasticity: a study of variational inequalities and finite element methods. Philadelphia: SIAM, 1988.
  3. Fikera G. Teoremy sushchestvovaniya v teorii uprugosti. M.: Mir, 1974.
  4. Vikhtenko E.M., Namm R.V. Skhema dvoystvennosti dlya resheniya polukoertsi-tivnoy zadachi Sin`orini s treniem   // ZHurn. vychisl. matem. i matem. fiz. 2007. T. 47. № 12. S. 2023-2036.
  5. Vikhtenko E.M., Namm R.V. Iterativnaya proksimal`naya regulyarizatsiya modi-fitsirovannogo funktsionala Lagranzha dlya resheniya kvazivariatsionnogo neravenst-va Sin`orini  // ZHurn. vychisl. matem. i matem. fiz. 2008.  T. 48. № 9.  S. 1571-1579.
  6. Vikhtenko E.M., Vu G., Namm R.V.   O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki // ZHurn. vychisl. matem. i matem. fiz. 2010. T. 50. № 8. S. 1357-1366.
  7. Namm R.V., Vikhtenko E.M. Modified Lagrangian Functional for Solving the Signorini Problem with Friction // Advances in Mechanics Research. V. 1. New-York: Nova Science Publishers, 2010. P. 435-446.
  8. Polyak B.T. Vvedenie v optimizatsiyu. - M.: Nauka, 1983.
  9. Namm R.V., Sachkov S.A. Reshenie kvazivariatsionnogo neravenstva Sin`orini metodom posledovatel`nykh priblizheniy // ZHurn. vychisl. matem. i matem. fiz. 2009. T. 49. № 5. S. 805-814.
  10. Marchuk G.I., Agoshkov V.I. Vvedenie v proektsionno-setochnye metody. - M.: Nauka, 1981.

Download Download article (317 Kb)

Сontents Сontents