Pacific national university Main page Bulletin of Pacific national university

UDC 517.983.23

© Lomakina E. N., 2007

Estimation of entropy numbers of the Hardy-type integral operators with variable limits of the integration

The asymptotical behavior of the entropy numbers of the Hardy-type integral operators with variable limits of integration acting in Lebesgue spaces on a semi axis are estimated.

References:

  1. Lomakina E. N. Otsenki approksimativnykh  chisel odnogo klassa integral`nykh operatorov // Sibirskiy matematicheskiy zhurnal. 2003. T. 44. ¹1.
  2. Maz`ya V. G. Prostranstva S. L. Soboleva. L., 1985.
  3. Pich A. Operatornye idealy. M., 1982.
  4. Carl B. Entropy numbers of diagonal operators with application to eigenvalue problems // J. Approx. Theor. 1981. V. 32.
  5. Carl B. Entropy numbers, s-numbers and eigenvalue problems // J. Funct. Anal. 1981. V. 41.
  6. Carl B. Entropy numbers of embedding maps between Besov spaces with an application to eigenvalue problems // Proc. Royal Soc. Edinburgh Sect. A. 90. 1981.
  7. Edmunds D.E., Tribel H. Function spaces, entropy numbers, differential operators. Cambridge: Cambridge Univ. Press., 1996.
  8. Kinig H. Eigenvalue distribution of compact operators. Birkh?user  Boston, 1986.
  9. Lifshits M.A.,Linde W. Approximation and entropy numbers of Volterra operators with application to Brownian motion // Mem. Am. Math. Soc. V. 745.

Download Download article (299.7 Kb)

Сontents Сontents