Моделирование систем 2005. №1(9)

УДК 537.533.7

© 2005 г. Е.С. Астапова, д-р физ.-мат. наук, Е.А. Ванина, канд. физ.-мат. наук, И.В. Гопиенко (Амурский государственный университет, Благовещенск)

РАСЧЕТ КОНЦЕНТРАЦИИ ДЕФЕКТОВ ПО МОДЕЛИ УПРУГОГО ВЗАИМОДЕЙСТВИЯ

Для кристаллов форстерита, облученных электронами высоких энергий, предложена модель расчета концентрации дефектов смещения по ударному механизму.

Введение

Под действием ионизирующих излучений (ИИ) в твердотельных материалах происходит образование собственно радиационных дефектов, связанных со смещением атомов среды, и изменение зарядового состояния уже существующих до облучения собственных и примесных генетических дефектов.

В широкощелевых монокристаллах оксидов образование дефектов смещения осуществляется преимущественно по ударному надпороговому механизму [1].

Цель данной работы – расчет концентрации дефектов по ударному механизму в ионно-ковалентных кристаллах.

Модель

Известно, что образование радиационного дефекта смещения представляет собой процесс формирования новой стабильной электронноионной структуры, в которой один из атомов решетки (в кристалле) занимает положение в междоузлии, оставляя на своем месте вакансию [2].

Необходимым условием для расчетов является знание пороговой энергии смещения атомов T_d . Образование дефекта (пары Френкеля) происходит, если атому среды передана кинетическая энергия больше пороговой. Для атомов кислорода и магния $T_d = 25$ эВ, кремния $T_d = 100$ эВ [3, 4].

Концентрация радиационных дефектов смещения n_d определяется из выражения

$$n_{d} = \frac{\Phi_{e}n_{a}}{h} \int_{E_{e}}^{E(h)} \frac{dE}{(-dE/dx)} \int_{T_{d}}^{T_{m}} \frac{d\sigma_{e}(E,T)}{dT} \nu(T) dT , \qquad (1)$$

где Φ_e – флюенс электронов; n_a – концентрация атомов среды; h – толщина облучаемого образца; T_m – максимально возможная энергия атома отдачи; T_d – пороговая энергия смещения; (dE/dx) – тормозная способность среды; $d\sigma_e$ – дифференциальное сечение взаимодействия; v(T) – каскадная функция [2].

По этой формуле рассчитывается концентрация дефектов смещения n_d в одноатомных средах. В сложном веществе картина каскадных явлений усложняется, поскольку пороговые энергии смещения T_d атомов разного сорта различны, величина энергии, передаваемой в каскаде от атома к атому, зависит от отношения их масс, а различные парные соударения не равновероятны. Поэтому, полагая, что каскады в сложном веществе происходят так же, как и в простом, рассчитаем концентрацию дефектов смещения по каждому сорту атомов отдельно, а суммарную концентрацию в виде

$$n_d = \sum_i q_i n_{d_i}, \tag{2}$$

где q_i – относительная доля *i*- й компоненты сложного вещества [5].

Упругое рассеяние электронов с энергией порядка 1 МэВ ($E >> m_e c^2$, электрон релятивистский) описывается дифференциальным сечением релятивистского резерфордовского рассеяния в кулоновском поле точечного ядра, которое было получено Моттом без учета экранирования. Поскольку формула Мотта весьма сложна и представляет сумму двух условно сходящихся бесконечных рядов Мак-Кинли, Фешбах приводит приближенное выражение формулы Мотта

$$\sigma_{d} = \pi \left(\frac{Ze^{2}}{mc^{2}}\right)^{2} \left(\frac{1}{\beta^{4}\gamma^{2}}\right) \left[\left(\frac{T_{m}}{T_{d}}-1\right) - \beta^{2} \ln \frac{T_{m}}{T_{d}} + \alpha Z\beta \pi \left\{2 \left[\left(\frac{T_{m}}{T_{d}}\right)^{1/2} - 1\right] - \ln \frac{T_{m}}{T_{d}}\right\}\right],$$
(3)

где Z – порядковый номер рассеивающего атома; е и m – соответственно заряд и масса покоя электрона; c – скорость света; $\beta = v/c$, v – скорость электрона; α – постоянная тонкой структуры [6].

Когда энергия бомбардирующих частиц находится в диапазоне $m_c c^2 \ll E \ll M_2 c^2$

(ультрарелятивистский электрон), сечение образования смещений стремится к насыщению на уровне

$$\sigma_{d} \rightarrow \frac{8\pi a_{F}^{2} Z^{2} E_{R}^{2}}{Mc^{2} T_{d}},$$
(4)

где a_{E} – радиус атома Бора; E_{R} – ридбергова единица энергии [7].

В качестве международного стандарта для расчета числа смещений в каскаде принята модель Торренса-Робинсона-Норгетта (ТРН-стандарт). В этой модели при расчете числа пар Френкеля в каскаде используется уравнение

$$\nu(T_{12}) = \frac{B(T_{12} - J)}{2T_d} = \frac{BT_{12}^*}{2T_d},$$
(5)

где B – эффективность смещений (B = 0,8 для всех значений энергий первично выбитого атома (ПВА)); J – неупругие потери энергии бомбардирующих частиц; T_{12} – энергия ПВА (при упругом рассеянии частиц) [7].

Неупругие потери энергии подсчитываются в соответствии с методом Линхарда с использованием аппроксимации универсальной функции

$$T_{12}^{*} = \frac{T_{12}}{1 + \chi_1 g(\varepsilon)},$$
(6)

$$\chi_1 = 0.1337 \frac{Z_2^{2/3}}{M_2^{1/2}},\tag{7}$$

$$g(\varepsilon) = 3,4008\varepsilon^{1/6} + 0,40244\varepsilon^{3/4} + \varepsilon, \qquad (8)$$

$$\varepsilon = \frac{I_{12}}{86,931Z_2^{7/3}}.$$
(9)

где Z_2 и M_2 – соответственно порядковый номер и масса рассеивающего атома [7].

Полные потери энергии электрона при прохождении через вещество

$$-\left(\frac{dE}{dx}\right)_{n_{0,n_{H}}} = -\left(\frac{dE}{dx}\right)_{u_{0,H}} + \left[-\left(\frac{dE}{dx}\right)_{p_{a\delta}}\right],\tag{10}$$

где $\left(-\left(\frac{dE}{dx}\right)_{uon}\right)$ – средние ионизационные потери энергии на единице пу-

ти (определяют тормозную способность среды); $\left(\frac{dE}{dx}\right)_{pa\partial}$ – средние радиа-

ционные потери энергии на единице пути [8].

Обсуждение результатов

В таблице приведены рассчитанные численным интегрированием суммарные концентрации радиационных дефектов смещения в кристаллах Mg₂SiO₄ для диапазона флюенсов 1.4·10¹⁴ ч 1.7·10¹⁴ электрон/см⁻².

Ранее установлено, что образовавшиеся дефекты смещения не вносят заметного влияния в свойства лазерных кристаллов, поскольку порядок дефектов смещения $n_d \sim 10^{16}$ см⁻³ (облучение электронами с энергией 1,3 МэВ), в то время как концентрация генетических дефектов ~ 10^{19} см⁻³ [9].

Φ люенс электронов, см ⁻²	Концентрация дефектов смещения n _d , см ⁻³
$1.4 \cdot 10^{14}$	$2.3 \cdot 10^{19}$
$2.8 \cdot 10^{14}$	$4.7 \cdot 10^{19}$
$3.5 \cdot 10^{14}$	6.10^{19}
$5.6 \cdot 10^{14}$	$1 \cdot 10^{20}$
$1.2 \cdot 10^{15}$	$1.2 \cdot 10^{20}$
$1.7 \cdot 10^{15}$	$2.8 \cdot 10^{20}$

Нами установлено, что при облучении кристаллов электронами высоких энергий (21 МэВ) концентрация дефектов смещения, образованных по ударному механизму, пропорциональна 10^{19} см⁻³ ($n_d \sim 10^{19}$ см⁻³), это сравнимо с концентрацией генетических дефектов.

При облучении кристаллов с увеличением флюенса электронов наблюдается насыщение центров окраски (ЦО). Поскольку модель упругого взаимодействия не учитывает вероятности радиационного и термического разрушения дефектных центров с момента насыщения, то целесообразно ее использовать для расчета концентрации дефектов в облученных кристаллах до насыщения ЦО.

ЛИТЕРАТУРА

- 1. *Клингер М.И., Лущик Ч.Б., Машовец Т.В. и др.* Создание дефектов в твердых телах при распаде электронных возбуждений // Успехи физ. наук. 1985. Т. 147. Вып. 3. С.523 558.
- 2. *Матковский А.О., Сугак Д.Ю., Убизский С.Б. и др.* Воздействие ионизирующих излучений на материалы электронной техники. Львов: Світ, 1994.
- 3. Келли Б. Радиационное повреждение твердых тел. М., 1970.
- 4. *Walker M., Wright K., Staler B.* A computational study of oxygen diffusion in olivine //Phys Chem Minerals. 30 (2003). P. 536-545.
- 5. Маклецов А.А., Улманис У.А., Шлихта Р.А. Расчеты эффективного сечения образования смещенных атомов ударным механизмом при электронном, нейтронном и гамма-облучении. Салапсис, 1984.
- 6. Болтакс Б.И. Точечные дефекты в твердых телах. М.: Изд-во Мир, 1979.
- 7. Зеленский В.Ф., Неклюдов И.М., Черняева Т.П. Радиационные дефекты и распухание металлов. Киев: Наукова думка, 1988.
- 8. Голубев Б.П. Дозиметрия и защита от ионизирующих излучений. М.: Энергоиздат, 1986.
- 9. *Кузмичева Г.М., Козликин С.Н., Жариков Е.В. и др.* Точечные дефекты в гадолинийгаллиевом гранате // Журнал неорг. химии. 1988. Т. 33. №9. С.2200- 2207.